Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Intensive Care Med Exp ; 11(1): 41, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37415048

RESUMEN

BACKGROUND: Diaphragmatic dysfunction is well documented in patients receiving mechanical ventilation. Inspiratory muscle training (IMT) has been used to facilitate weaning by strengthening the inspiratory muscles, yet the optimal approach remains uncertain. Whilst some data on the metabolic response to whole body exercise in critical care exist, the metabolic response to IMT in critical care is yet to be investigated. This study aimed to quantify the metabolic response to IMT in critical care and its relationship to physiological variables. METHODS: We conducted a prospective observational study on mechanically ventilated patients ventilated for ≥ 72 h and able to participate in IMT in a medical, surgical, and cardiothoracic intensive care unit. 76 measurements were taken on 26 patients performing IMT using an inspiratory threshold loading device at 4 cmH2O, and at 30, 50 and 80% of their negative inspiratory force (NIF). Oxygen consumption (VO2) was measured continuously using indirect calorimetry. RESULTS: First session mean (SD) VO2 was 276 (86) ml/min at baseline, significantly increasing to 321 (93) ml/min, 333 (92) ml/min, 351(101) ml/min and 388 (98) ml/min after IMT at 4 cmH2O and 30, 50 and 80% NIF, respectively (p = 0.003). Post hoc comparisons revealed significant differences in VO2 between baseline and 50% NIF and baseline and 80% NIF (p = 0.048 and p = 0.001, respectively). VO2 increased by 9.3 ml/min for every 1 cmH2O increase in inspiratory load from IMT. Every increase in P/F ratio of 1 decreased the intercept VO2 by 0.41 ml/min (CI - 0.58 to - 0.24 p < 0.001). NIF had a significant effect on the intercept and slope, with every 1 cmH2O increase in NIF increasing intercept VO2 by 3.28 ml/min (CI 1.98-4.59 p < 0.001) and decreasing the dose-response slope by 0.15 ml/min/cmH2O (CI - 0.24 to - 0.05 p = 0.002). CONCLUSIONS: IMT causes a significant load-dependent increase in VO2. P/F ratio and NIF impact baseline VO2. The dose-response relationship of the applied respiratory load during IMT is modulated by respiratory strength. These data may offer a novel approach to prescription of IMT. TAKE HOME MESSAGE: The optimal approach to IMT in ICU is uncertain; we measured VO2 at different applied respiratory loads to assess whether VO2 increased proportionally with load and found VO2 increased by 9.3 ml/min for every 1 cmH2O increase in inspiratory load from IMT. Baseline NIF has a significant effect on the intercept and slope, participants with a higher baseline NIF have a higher resting VO2 but a less pronounced increase in VO2 as the inspiratory load increases; this may offer a novel approach to IMT prescription. Trial registration ClinicalTrials.gov, registration number: NCT05101850. Registered on 28 September 2021, https://clinicaltrials.gov/ct2/show/NCT05101850.

2.
Physiol Rep ; 11(9): e15668, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147887

RESUMEN

Increased ventilatory work beyond working capacity of the respiratory muscles can induce fatigue, resulting in limited respiratory muscle endurance (Tlim ). Previous resistive breathing investigations all applied square wave inspiratory pressure as fatigue-inducing pattern. Spontaneous breathing pressure pattern more closely approximate a triangle waveform. This study aimed at comparing Tlim , maximal inspiratory pressure (PImax ), and metabolism between square and triangle wave breathing. Eight healthy subjects (Wei = 76 ± 10 kg, H = 181 ± 7.9 cm, age = 33.5 ± 4.8 years, sex [F/M] = 1/7) completed the study, comprising two randomized matched load resistive breathing trials with square and triangle wave inspiratory pressure waveform. Tlim decreased with a mean difference of 8 ± 7.2 min (p = 0.01) between square and triangle wave breathing. PImax was reduced following square wave (p = 0.04) but not for triangle wave breathing (p = 0.88). Higher VO2 was observed in the beginning and end for the triangle wave breathing compared with the square wave breathing (p = 0.036 and p = 0.048). Despite higher metabolism, Tlim was significantly longer in triangle wave breathing compared with square wave breathing, showing that the pressure waveform has an impact on the function and endurance of the respiratory muscles.


Asunto(s)
Fatiga Muscular , Insuficiencia Respiratoria , Humanos , Adulto , Fatiga Muscular/fisiología , Respiración , Músculos Respiratorios/fisiología , Frecuencia Respiratoria
3.
Int J Sports Med ; 41(10): 661-668, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32455456

RESUMEN

The purpose of this study was to investigate the correlation between the seismocardiogram and cardiorespiratory fitness. Cardiorespiratory fitness can be estimated as VO2max using non-exercise algorithms, but the results can be inaccurate. Healthy subjects were recruited for this study. Seismocardiogram and electrocardiogram were recorded at rest. VO2max was measured during a maximal effort cycle ergometer test. Amplitudes and timing intervals were extracted from the seismocardiogram and used in combination with demographic data in a non-exercise prediction model for VO2max. 26 subjects were included, 17 females. Mean age: 38.3±9.1 years. The amplitude following the aortic valve closure derived from the seismocardiogram had a significant correlation of 0.80 (p<0.001) to VO2max. This feature combined with age, sex and BMI in the prediction model, yields a correlation to VO2max of 0.90 (p<0.001, 95% CI: 0.83-0.94) and a standard error of the estimate of 3.21 mL·kg-1·min-1 . The seismocardiogram carries information about the cardiorespiratory fitness. When comparing to other non-exercise models the proposed model performs better, even after cross validation. The model is limited when tracking changes in VO2max. The method could be used in the clinic for a more accurate estimation of VO2max compared to current non-exercise methods.


Asunto(s)
Capacidad Cardiovascular , Pruebas de Función Cardíaca/métodos , Consumo de Oxígeno , Adulto , Algoritmos , Índice de Masa Corporal , Electrocardiografía , Femenino , Humanos , Estudios Longitudinales , Masculino , Procesamiento de Señales Asistido por Computador
4.
Nutr Clin Pract ; 34(5): 767-774, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30714634

RESUMEN

BACKGROUND: Indirect calorimetry (IC) is considered the accurate way of measuring energy expenditure (EE). IC devices often apply the Haldane transformation, introducing errors at inspiratory oxygen fraction (FiO2 ) >60%. The aim was to assess measurement reliability and agreement between an unevaluated IC (device 2) (Beacon Caresystem, Mermaid Care A/S, Noerresundby, Denmark) not using Haldane transformation and an IC that does (device 1) (Ecovx, GE, Helsinki, Finland) at varying FiO2 . METHODS: Twenty healthy male subjects participated, with 16 completing the study (33 ± 9 years, 83.3 ± 16 kg, 1.83 ± 0.08 m). Subjects were mechanically ventilated in pressure support (3cmH2 O; positive end-expiratory pressure: 3cmH2 O) at FiO2 of 21%, 50%, 85%, and 21% for 15 minutes at each FiO2 . Mean EE, oxygen consumption (VO2 ), and CO2 production (VCO2 ) were compared within and between devices across FiO2 levels. RESULTS: Device 2 showed within-device EE significant differences at 21% vs 50% FiO2 and device 1 for VCO2 at 50% vs. 85% FiO2 . For all variables, both devices showed reliable measurements at 21% and 50% FiO2 , but at 85%, FiO2 bias and limits of agreement increased. Between devices, there were significant differences for EE at both 21% and 85% FiO2 for VO2 and for VCO2 at 85% FiO2 . CONCLUSION: Both systems measured EE, VO2 , and VCO2 at 21%-85% FiO2 reliably but with bias at 85% FiO2 . The devices were in agreement at 21% and 50% FiO2 , but further studies need to confirm accuracy at high FiO2 .


Asunto(s)
Calorimetría Indirecta/normas , Respiración Artificial/normas , Adulto , Calorimetría Indirecta/instrumentación , Metabolismo Energético , Voluntarios Sanos , Humanos , Inhalación , Masculino , Consumo de Oxígeno , Reproducibilidad de los Resultados , Respiración Artificial/métodos
5.
Med Sci Sports Exerc ; 48(12): 2571-2579, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27327026

RESUMEN

PURPOSE: Noninvasive imaging of oxygen uptake may provide a useful tool for the quantification of energy expenditure during human locomotion. A novel thermal imaging method (optical flow) was validated against indirect calorimetry for the estimation of energy expenditure during human walking and running. METHODS: Fourteen endurance-trained subjects completed a discontinuous incremental exercise test on a treadmill. Subjects performed 4-min intervals at 3, 5, and 7 km·h (walking) and at 8, 10, 12, 14, 16, and 18 km·h (running) with 30 s of rest between intervals. Heart rate, gas exchange, and mean accelerations of ankle, thigh, wrist, and hip were measured throughout the exercise test. A thermal camera (30 frames per second) was used to quantify optical flow, calculated as the movements of the limbs relative to the trunk (internal mechanical work) and vertical movement of the trunk (external vertical mechanical work). RESULTS: Heart rate, gross oxygen uptake (mL·kg·min) together with gross and net energy expenditure (J·kg·min) rose with increasing treadmill velocities, as did optical flow measurements and mean accelerations (g) of ankle, thigh, wrist, and hip. Oxygen uptake was linearly correlated with optical flow across all exercise intensities (R = 0.96, P < 0.0001; V˙O2 [mL·kg·min] = 7.35 + 9.85 × optical flow [arbitrary units]). Only 3-4 s of camera recording was required to estimate an optical flow value at each velocity. CONCLUSIONS: Optical flow measurements provide an accurate estimation of energy expenditure during horizontal walking and running. The technique offers a novel experimental method of estimating energy expenditure during human locomotion, without use of interfering equipment attached to the subject.


Asunto(s)
Metabolismo Energético/fisiología , Carrera/fisiología , Termografía/métodos , Caminata/fisiología , Adulto , Prueba de Esfuerzo , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Fenómenos Ópticos , Consumo de Oxígeno/fisiología , Intercambio Gaseoso Pulmonar/fisiología
6.
Respir Physiol Neurobiol ; 205: 77-83, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25448397

RESUMEN

The study aimed to investigate diaphragm respiratory drive modulation through electrical activity of the diaphragm (EADi) during progressive cycling in endurance-trained men (N=7) and to test day-to-day measurement reliability. Normalized EADi increased at exercise intensities from 40% workload (WL) to 70% and 85%WL but plateaued from 70% to 85% (p<0.05). V˙O2, V˙CO2, V˙E, increased at all exercise intensities, where Vt and BF increased from 40% to 55% WL and from 70% to 85% and RER increased at 70% and 85% (p<0.05). Bland-Altman plots of normalized EADi showed bias of 0.9% and -6.4% and limits of agreement of ±36.0% and ±30.4% for absolute measurements and relative changes from 40% WL, respectively. Within-day variability appeared constant indicating that measurements within a trial are reliable. Results suggest that diaphragm respiratory drive increases at moderate exercise intensities, but plateaus at high intensities where other respiratory muscles might contribute significantly to the breathing effort, perhaps to "protect" against diaphragm fatigue.


Asunto(s)
Diafragma/fisiología , Ejercicio Físico/fisiología , Resistencia Física/fisiología , Fenómenos Fisiológicos Respiratorios , Adulto , Ciclismo , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...